0 -«

Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, scarching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, inchuding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503,

1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE - 3. REPORT TYPE AND DATES COVERED :
FINAL 01 Sep 00 - 28 Feb 01

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Technology Options for Muiti-specttral Infrared Cameras DAAD19-00-1-0498

6. AUTHOR(S)

Griff Bilbro

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
North Carolina State University
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211 41627.1-Cl-ll

Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Investigates the adaptation of Bayer color arrays as used in commercial of the shelf cameras to separate red, biue, and green
spectra to multispectral infrared image sensors. Technology for filters on each pixel element for a spectral band is investigated and
the demosaicing where values of the spectral bounds not sampled at certain locations are estimated from their neighbors.

14. SUBJECT TERMS 15. NUMBER OF PAGES B
16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED _UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

" Prescribed by ANSI Std. 239-18
298-102

20011113 118




Technology Options for
Multi-Spectral Infrared Cameras

Finél Technical Report for
Research Agreement No. DAAD19-00-01-0498

October 23, 2001

submitted to Dr. William Sander
Associate Director,
Computing & Information Science Division

US Army Research Office

by Dr. Griff L. Bilbro
Professor of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC 27695-7911

Abstract

This report comprises the concluding analysis entitled “Robust Multispectral
Imaging Sensors for Autonomous Robots” of the project as well as three
additional documents.  First, a complete report comparing alternative
demosaicking algorithms for early processing of the sensors we are proposing.
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Robust Multispectral
Imaging Sensors for

Autonomous Robots
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Griff L. Bilbro, Senior Member, IEEE
William A. Sander

Abstract—Use of multispectral capability in imaging de-
vices provide us with spectral characteristics of the objects
being viewed. This helps in “recognizing” the object with-
out any knowledge of the geometry or shape of the desired
target. Until recently, multispectral images were obtained
using multiple filters placed in front of the imaging devices
or by using prism based beam-splitting technologies. With
the advent of Digital Still Color Cameras, a whole new field
of imaging has emerged, which consists of a monolithic ar-
ray of color filters overlaid on a CCD array such that each
pixel samples one spectral band. The resulting mosaic of
spectral samples is processed to produce a high resolution
color image where the values of the spectral bands not sam-
pled at a certain location are estimated from its neighbors.
This process is often refeLred to as demosaicking. This pa-
per proposes the use of this technology as a general imaging
modality for robust robot vision and compares several de-
mosaicking algorithms.

Index Terms—Multispectral, demosaicking, demosaicing,
Color Filter Array, hexagonal sampling

I. INTRODUCTION

BTAINING multiple spectral samples of an object

provide us with its spectral signature, which under
many circumstances is of crucial importance. The plethora
of information obtained from a color picture when com-
pared to a grayscale picture, the wealth of information in
obtaining a spectral signature of an enemy tank when com-
pared to an integrated monochromatic image, the advan-
tages of identifying vegetation, rocks, minerals, etc. from
a satellite with multispectral capability, rather than sin-
gle channel information cannot be overstated. In fig.1, we
show the reflectivities of four different objects [1], the iden-
tification of which are critical for military purposes; espe-
cially for target seeking missiles or reconnaissance missions.
Notice that the visible band would not be as useful as a
combination of visible and MWIR, bands which clearly pro-
vides unique spectral signatures for camouflaged military
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vehicles. Other applications for multispectral imagery have
been found in glaciology, hydrology, volcanology, geological
surveys|2], monitoring urban change[3] etc.
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Fig. 1. Reflectivities of a few targets critical for detecting camouflage
in battlefields

The classical approach to multispectral imaging is to use
separate sensors and to somehow split the optical path to
fall on those sensors in a manner which retains registration
(or is later registered). For example in 3 CCD cameras,
typically the light from the lens passes through a prism,
is split into three rays, then through three different filters
and onto three different focal plane detectors (see fig.2).

Red Sensor

|7
7
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Color Separating 3 CCD Prism

Blue Sensor

Object Objective Lens

Fig. 2. 3 sensor configuration on most multispectral cameras

On satellite or airborne sensors, the optical path might
be deflected by a moving mirror onto an array of sensors
(e.g. MODIS/ASTER use “whiskbroom” scanning mir-
rors). Both approaches have the inherent problem of reg-
istration of the images. In addition, such sensors simply
cannot tolerate the vibrations and accelerations of a mobile
robot. .

In [4] reconnaissance and surveillance robots are de-
scribed, each provided with a suite of sensors. A mosaicked
set of sensors as proposed here would be of immense use
in such missions, providing multispectral capability along
with ruggedness.

Airborne systems, robot platforms, missiles, etc. are
used under “high stress” situations which require that the
imaging system perform independent of the systems’ vibra-
tion and acceleration. Multiple sensor systems are difficult




to manufacture with this capability. Monolithic color fil-
ter array based systems however provide this stability for
imaging while maintaining registration as it is an inherent
property of such devices.
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Fig. 3. Bayer Color Filter Array (a)Classical form using three filters
(b) Similar configuration with four filters

Commercially available Digital Still Color Cameras
(DSCs) approach the problem of using a single sensor to
capture multispectral data by making use of a monolithic
array of color filters overlaid on a CCD array, such that
each pixel records only one sample of the spectrum. Three
or more different filters (typically three) are used in a tes-
sellated fashion as shown in fig.3(a) {5]. To estimate say,
a green pixel value at a location where a red sample was
obtained, we interpolate (demosaic) and obtain this infor-
mation from the neighbors. A variety of color filter array
configurations are in use in DSCs. A few of these mosaics
[6] are displayed in fig.4. The Bayer configuration is how-
ever the most commonly used. ,

We propose that mosaic technology is a robust alter-
native to existing multispectral imaging modalities, albeit
with some loss in spatial resolution.

In Section 2 we illustrate commonly used demosaicking
algorithms and compare their advantages and disadvan-
tages. In section 3, we use experiments to illustrate the
trade-off between gaining multispectral resolution over loss
in spatial resolution due to mosaicking.

II. DEMOSAICKING

An experiment equivalent to that done with mosaick-
ing visible bands has not been done in the infrared (IR) or
other spectral bands. Furthermore, it is interesting to note
that we are not constrained to three bands or to conven-
tional rectangular pixels or to the human visual system.
For example, we could simply use the existing Bayer Ar-
ray configuration and use four spectral bands instead of
three as shown in fig.3(b). In fig.5(a), we illustrate a four-
band hexagonal sampling arrangement for which we are
currently building hardware. In this arrangement, each
pixel has exactly two neighbors from each of the other
bands.

In fig.5(b), we illustrate that seven bands can be sensed
in this way. In this novel 7-band hexagonal arrangement,
every pixel has exactly one adjacent neighbor in each band,
so that the spectral intensity at any point can always be
estimated from data no farther than one pixel away [7).
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Fig. 4. Other Color Filter Arrays (a)Proposed by Yamanaka (b)
Green channel along on alternate scan lines (¢) another commonly
used configuration

The choice of spectral bands chosen is entirely dependent
upon the application.

The mosaic of samples is processed to produce a high
resolution multispectral image such that the values of the
color bands not sampled at a certain location are estimated
from its neighbors. This process is often referred to as
demosaicking. A variety of algorithms for demosaicking
exist. The simplest one being bilinear interpolation. An
exhaustive comparison of a some of the commonly used
demosaicking methods is available in [§].

III. EXPERIMENTS

In this section we compare results of demosaicking pro-
cesses on different images using several different methods
described in {9],[10],[11],[12] and [13]. These images should
give the reader and idea about the pros and cons of this
imaging modality, in each of the two types of images; those
in the visible region and the IR region of the spectrum.
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(®)

Fig. 5. Hexagonal configurations of color mosaics (a) Arrangement
of four bandpass filters where each pixel has exactly two neighbors
from other spectral bands (b) A similar arrangement in which seven
spectral bands are measured, using seven filters, and a multispectral
estimate may be obtained from immediate neighbors

The Mean Squared Error (MSE) is given by

3 MN

MSE = 3_]"}7\]- Z Z (g(i’j,k) - f(ini’ k))2 (1)

k=14,j=1

where f(i,],k) is the original image pixel intensity at pixel
location (i, 7) in band k and g(i, j, k) is the estimated image
pixel intensity at pixel location (Z,5) in band k.

Although the MSE metric is not without limitations, es-
pecially when used as a global measure of image fidelity, it
used due to its ease in implementation. We hence compare
the algorithms with two different metrics, the first one be-
ing the mean squared error and the other, the AE?, metric
[14], which is the measured error in the CIE — L*a*b* color
space, one of the many perceptually uniform color spaces.
Errors in perceptually uniform color spaces measure errors
that human observers perceive (which is meaningful for
images in the visible spectrum).

A. Visible Spectrum

The images in the visible region of the spectrum were

obtained using two different methods;

« simulation of the color filter array sampling for which
we used data obtained from the hyperspectral Image
dataset [15]. The results are presented in fig.6.

+ a Pulnix TMC-1001 camera (outputs mosaicked im-
ages). Figs. 7 and 8 show results of demosaicking
these images.

Table I shows the error metrics described above on these

images. For the purposes of human viewing, image qual-

ity metrics in perceptually uniform color spaces or other
metrics that measure image fidelity would be preferred for
comparison.

In general, visible spectrum images have two kinds of
errors,

o zipper effect errors that occur along intensity edges as

seen in fig.7

o confetti errors that occur at isolated pixels that are

at very high intensity compared to their neighbors, as
seen in fig.8.

These errors are “disturbing” to a human observer when
viewing color images of natural scenes or scenes about
which humans have prior knowledge. Notice that the var-
jous algorithms have been developed with edge enhance-
ment being the primary criterion. Images from left to right

in fig.7 are in chronological order of development in this
field.

B. IR Spectrum

The images in the IR region of the spectrum were ob-
tained from the MASTER dataset [16] by subsampling the
multispectral images using a Bayer sampling array. It is
to be emphasized that this a simulation of multispectral
mosaic imaging in IR. Mosaicked data obtained from a
mosaicked IR sensor is not available at this time.

The results of demosaicking using algorithms devised for
the visible spectrum are shown in fig.9. In general, we ob-
serve a similar trend in errors as found in visible spectrum
images,

o zipper effect errors, that arise due to sharp intensity

edges

« confetti errors, that arise due to the “low” spatial res-

olution of these images.

Satellite / airborne imagery has the inherent drawback
that the images are of relatively poor resolution when com-
pared to those of commercial available DSCs. This gives
rise to confetti errors when rendered for human vision.
However, it needs to be noted that these images are not
to be viewed by an observer and appreciated for quality,
rather these images will be used by target-seeking missles
or parameter-monitoring systems which will use the spec-
tral information in these images to perform recognition or
other similar decision tasks. Multispectral capability is
most useful when the targets are minimally resolved as is
the case in satellite and airborne imagery. The bounds on
“minimal” resolution are being researched and we hope to
publish those results in the near future.

Table I shows average error metrics, averaged over dif-
ferent regions in these images. The Peak Signal to Noise
ratio (PSNR) is given by

1
where MSE is the mean squared error. The images are all
scaled between 0 and 1.

We need to bear in mind that for decision-oriented or
recognition systems, ROC curves would give a better mea-
sure of performance of these algorithms. But, due to the
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Fig. 6. Simulation of DSC Images (a) Original Image (b)Linear Interpolation (c)Cok Interpolation (d)Freeman Interpolation (e) Laroche
Interpolation (f)Hamilton-Adams Interpolation

Original Linear Cok Freeman Laroche-Prescott Hamilton-Adams
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Fig. 7. DSC Images illustrating zipper effect (a) Original Image (b)Linear Interpolation (c)Cok Interpolation (d)Freeman Interpolation (e)
Laroche Interpolation (f)Hamilton-Adams Interpolation
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Fig. 8. DSC Images illustrating confetti effect (2) Original Image (b)Linear Interpolation (c)Cok Interpolation (d)Freeman Interpolation
(e) Laroche Interpolation (f)Hamilton-Adams Interpolation

(a) (b) () (@ (e ®

Fig. 9. IR Image Mosaics; band 39(Red), 33(Green), 24(Blue) (a) Original Image (b)Linear Interpolation (c)Cok Interpolation (d)Freeman
Interpolation (e) Laroche Interpolation (f)Hamilton- Adams Interpolation

wide applicability of this imaging modality, we restrict our- IV. CONCLUSIONS

selves to the MSE metric. The errors quantified in table I give an idea about

the performance of these algorithms. Clearly, Hamilton-
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Algorithm Hyperspectral MASTER
used Image dataset Images
AE}, | AEgrgp | PSNR | MSE | PSNR
(dB) (dB)
Linear 6.5766 0.0115 19.39 | 0.0570 12.92
Cok 3.1777 0.0024 26.19 | 0.0416 13.81
Freeman 2.5263 0.0011 29.59 1 0.0461 | 13.36
Laroche- 1.6681 0.00098 30.09 | 0.0410 | 13.87
Prescott
Hamilton- 1.2473 0.00045 33.48 | 0.0339 | 14.69
Adams
TABLE I

ERRORS FOR DIFFERENT INTERPOLATION ALGORITHMS ON THE
HYPERSPECTRAL IMAGE DATA-SET AND MASTER IMAGES AFTER
DEMOSAICKING

Adams’ algorithm performs best under the MSE metric;
which conforms to the visual appearance of the resulting
images (the lowest AE?, error, making the errors least de-
tectable by a human observer) and is further corroborated
by an increasing PSNR.

Although we “lost” spatial resolution in using the Bayer
Array by using % the number of green sensors and i the
number of red and blue sensors, we were able to reconstruct
the full resolution images with good clarity, gaining

« robustness and

« the use of only one array of sensors.

Table II summarizes the advantages and disadvantages
of this imaging modality.

Multiple Mosaicked

Sensors Sensor Array
Registration can be difficult not required
Mechanical sensitive highly robust
Robustness

No. of sensors || mn R, mn G, mn B | B2 R, B G, B

for mxn size (3-band Bayer)
RGB images

No. of sensor 3

1(3-band Bayer)
arrays for 3
bands
No. of sensor 7
arrays for 7
bands

1(7-band Hexagonal)

TABLE 11
PROS AND CONS OF MOSAICKING

Although there are performance bounds on the trade-off
between loss in spatial resolution and the gain in spectral
resolution, such a robust system has potential benefits far

beyond other existing multispectral imaging systems for
use in robotic, satellite-based, field-portable or hand-held
systems.

The average loss observed by mosaicking sensors clearly
suggests that the loss may be decreased by using “better”
estimation / interpolation methods.

We are currently posing the process of demosaicking as
an optimization problem with a cost function such that it
minimizes the errors obtained due to mosaicking, using a
variety of priors which will impose certain properties on
the images while

» maximizing spectral overlap between observed target

and “expected target”. In other words, minimizing
the “error” (however it be defined) between the ob-
served and known spectral signatures of the target.

« maximizing probability of detection of the target (in

ATR applications)

We anticipate presenting results of this work at the con-

ference.
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Demosaicking methods for Bayer Color Arrays

Rajeev Ramanath! Wesley E. Snyder! Griff L. Bilbro" William Sander?

Abstract

Digital Still Color Cameras sample the color spectrum using a monolithic array of color
filters overlaid on a CCD array such that each pixel samples only one color band. The
resulting mosaic of color samples is processed to produce a high resolution color image such
that the values of the color bands not sampled at a certain location are estimated from
its neighbors. This process is often referred to as demosaicking. This paper introduces and
compares a few commonly used demosaicking methods using error metrics like mean squared

error (MSE) in the RGB color space and perceived error in the CIE-L*a*b* color space.

Index Terms

Demosaicking, Demosaicing, Color Filter Arrays, Digital Color Camera, DSC, Interpo-

lation

I. INTRODUCTION

OMMERCIALLY available Digital Still Color Cameras (DSC) are based on a single
C CCD array and capture color information by using three or more color filters, each
sample point capturing only one sample of the color spectrum. The Bayer Array [1] (shown
in fig.1) is one of the many realizations of color filter arrays (CFA) possible. Many other
implementations of a color-sampling grid have been incorporated in commercial cameras,
most using the principle that the luminance channel (gréen) needs to be sampled at a higher

rate than the chrominance channels (red and blue). The choice for green as “representative”

t Rajeev Ramanath, Wesley Snyder and Griff Bilbro are with the Department of Electrical and Computer Engi-
neering at North Carolina State University, Raleigh, NC, 27695-7914, USA. Phone: (919) 513-2007, email: {rremana,
wes, glb}@eos.ncsu.edu

William Sander is with the U.S. Army Research Office, Durham, P.O. Box 12211, Research Triangle Park, NC
27709, USA, Phone: (919) 529-4241, email: sander@arl.aro.army.mil
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Fig. 1. Sample Bayer Pattern

of the luminance is due to the fact that the luminance response curve of the eye peaks at

around the frequency of green light (see fig.2).
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Fig. 2. Luminous Efficiency function of human observer. Note: peak is at around frequency of green light

Since, at each pixel, only one spectral measurement was made, the other colors must be
estimated using information from all the color planes in order to obtain a high resolution color
image. This process is often referred to as demosaicking. Interpolation must be performed
on the mosaicked image data. There are a variety of methods available, the simplest being
linear interpolation, which, as shall be shown, does not maintain edge information well. More
complicated methods [2], [3], [4], [5], [6] perform this interpolation and attempt to maintain
edge detail or limit hue transitions. In [7], Trussell introduces a linear lexicographic model
for the image formation and demosaicking process, which may be used in a reconstruction

step. In [8], linear response models proposed by Vora et.al [9] have been used to reconstruct
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these mosaicked images using an optimization technique called Mean Field Annealing [10].
In this paper we briefly describe the more commonly used demosaicking algorithms and
demonstrate their strengths and weaknesses. In Section II, we déscribe the'interpolation
methods we use in our comparisons. We compare the interpolation methods by running the
algorithms on three types of images (two types of synthetic image sets and one set of real-
world mosaicked images). The images used for comparison and their properties are presented
in section III. Qualitative and quantitative results are presented in Section IV. Discussions
about the properties of these algorithms and their overall behavior are presented in Section
V. We use two error metrics, the mean squared error in the RGB color space and the AE},

error in the CIE-L*a*b* color space (described in the Appendix).

II. DEMOSAICKING STRATEGIES
A. Ideal Interpolation

Sampling of a continuous image f(z,y) yields infinite repetitions of its continuous spec-
trum F((,n) in the Fourier domain. If these repetitions do not overlap (which is almost
never the case as natural images are not band-limited), the original image f(z,y) can be re-
constructed exactly from its discrete samples f(m,n), otherwise we observe the phenomenon
of aliasing. The 1-D “ideal” interpolation is the multiplication with a rect function in the
frequency domain and can be realized in the spatial domain by a convolution with the sinc
function. This “ideal interpolator” kernel is band-limited and hence is not space limited. It

is primarily of theoretical interest and not implemented in practice {11].

B. Neighborhood considerations

It may be expected that we get better estimates for the missing sample values by in-

creasing the neighborhood of the pixel, but this increase is computationally expensive. There



Ramanath et. al: DEMOSAICKING 4

is hence a need to keep the interpolation filter kernel space-limited to a small size and also
extract as much information from the neighborhood as possible. To this end, correlation
between color channels is used [12]. For RGB images, cross-correlation between channels
has been determined and found to ifary between 0.25 and 0.99 with averages of 0.86 for
red/green, 0.79 for red/blue and 0.92 for green/blue cross correlations [13]. One well-known
image model' [12] is to simply assume that red and blue are perfectly correlated with the
green over a small neighborhood and thus differ from green by only an offset. This image
model is given by
Gij = Rij +k N6
where (i, j) refers to the pixel location, R (known) and G (unknown) the red and green pixel
vﬁlues, k is the appropriate bias for the given pixel neighborhood. The same applies at a
blue pixel locatién. Let us illustrate eqn.1 with an example by considering the green channel
of an image and the corresponding Green minus Red and Green minus Blue channels. In
fig.3, we can see that majority of the regions in the Green minus Red and Green minus Blue
images are locally uniform (the constant k in eqn.1), especially in regions where there is high
spatial detail (near the eyes of the macaws, say).
Hence the choice of the neighborhood size is critical. It is observed that most imple-
mentations are designed with hardware implementation in mind (paying great attention to
the need for pipelining, system latency and throughput per clock cycle). The larger the

neighborhood, the greater the difficulty in pipelining, the greater the latency, and possibly,

lesser the throughput.

C. Bilinear Interpolation

Consider the array of pixels as shown in fig.1. At a blue center (where blue color was

measured), we need to estimate the green and red components. Consider pixel location 44
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(©) (d)

Fig. 3. (a) RGB image b) Green Channel ¢) Green minus Red (d)Green minus Blue

at which only By, is measured; we need to estimate Gy. Given Gay, Gu3, Gus, G54, One
estimate for Gu4 is given by Gas = (Gay + Gz + G5 + Gs4) /4. To determine Ryy, given Ras,
Rss, Rss, Rss, the estimate for Ry is given by Ry = (Ras + Ras + Rss + Rss)/4. At a red
center, we would estimate the blue and green accordingly. Performing this process at each
photo-site (location on the CCD), we can obtain three color planes for the scene which would
give us one possible demosaicked form of the scene.

The band-limiting nature of this interpolation smooths edges, which shows up in color
images as fringes (referred to as the zipper effect (12], [14]). This has been illustrated with

two colors channels (for simplicity) in fig.4.
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Fig. 4. Ilustration of fringe or zipper effect resulting from the linear interpolation process. An edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128). The zipper effect produces green pixels
near the edge (a) Original image (only 2 colors, blue constant at 128) (b) one scan line of subsampled Bayer
pattern (choose every other pixel) (c) result of estimating missing data using linear interpolation. Observe
color fringe in locations 5 and 6

D. Constant hue-based Interpolation

In general, hue is defined as the property of colors by which they can be perceived as
ranging from red through yellow, green, and blue, as determined by the dominant wavelength
of the light. Constant hue-based Interpolation, proposed by Cok [2] and is one of the first
few methods used in commercial camera systems. Modifications of this system are still in
use. The key objection to pixel artifacts in images that result from bilinear interpolation
is abrupt and unnatural hue change [2]. There is a need to maintain the hue of the color
such that there are no sudden jumps in hue (except for over edges, say). The red and blue
channels are assigned to be the chrominance channels while the green channel is assigned as
the luminance channel.

As used in this section, hue is defined by a vector of ratios as (R/G,B/G) [2]. 1t is to
be noted that the term hue defined above is valid for this method only, also, the hue needs
to be “redefined” if the denominator G is zero. By interpolating the hue value and deriving
the interpolated chrominance values (blue and red) from the interpolated hue values, hues
are allowed to change only gradually, thereby reducing the appearance of color fringes which

would have been obtained by interpolating only the chrominance values.
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Consider an image with constant hue. In exposure space (be it logarithmic' or linear),
the values of the luminance (G) and one chrominance component (R, say) at a location (3, j)
and a neighboring sample location (k,!) are related as Ri;/ Rkl = Gij/Gn if Bij/ B = Gij /G

If Ry, represents the unknown chrominance value, and R;; and Gy; represent measured
values and Gy represents the interpolated luminance value, the missing chrominance value
Ry is given by Ry = Gu(Rij/Gi;) In an image that does not have uniform hue, as in a
typical color image, smoothly changing hues are assured by interpolating the hue values
between neighboring chrominance values.

The green channel is first interpolated using bilinear interpolation. After this first pass,
the hue is interpolated. Referring to fig.1,

Rss Rss  HRss  Rss
+o2 Ry
Gss Gz Gss  Gss 2)
4

Riyy=Gy4

and similarly for the blue channel

B B B B
2, bu Do 44

Gos Gy Gy Gy
: ®

B33 = G33

The G values in bold-face are estimated values, after the first pass of interpolation. The ex-
tension to the logarithmic exposure space is straightforward as multiplications and divisions
in the linear space become additions and subtractions, respectively in the logarithmic space.
There is a caveat however as interpolations will be performed in the logarithmic space and
hence the relations in linear space and exposure space are not identical [2]. Hence in most

implementations the data is first linearized [15] and then interpolated as described above.

1 Most cameras capture data in a logarithmic exposure space and need to be linearized before the ratios used as
such. If interpolating in the logarithmic exposure space, difference of logarithms needs to be taken instead of ratios;
i.e. log(R:;/Rit) =log(R:;) —log(Rx1)




Ramanath et. al: DEMOSAICKING 8

E. Median-based Interpolation

This method, proposed by Freeman [3], is a two pass process, the first being a linear
interpolation, and the second pass a median filter of the color differences.

In the first pass, linear interpolation is used to populate each photo-site with all three
colors and in the second pass, the difference image, of say, Red minus Green and Blue minus
Green is median filtered. The median filtered image thus obtained is then used in conjunction
with the original Bayer array samples to recover the samples (illustrated below). This method
preserves edges very well, as illustrated in fig.5 where only one row of the Bayer array is
considered since this process can be extrapolated to the case of the rows containing blue and
green pixels. Fig.5(a) shows one scan line of the original image before Bayer subsampling, the
horizontal axis is the location index and the vertical axis represents intensity of red and green
pixels. We have a step edge between locations 5 and 6. Fig.5(b) shows the same scan line,
sampled in a Bayer fashion, picking out every other pixel for red and green. Fig.5(c) (step 1
of this algorithm) shows the result of estimating the missing data using linear interpolation.
Notice the color fringes introduced between pixel locations 5 and 6; fig.5(d) (step 2) shows
the absolute valued difference image between the two channels; fig.5(e) (step 3) shows the
result of median filtering the difference image with a kernel of size 5. Using this result and
the sampled data, fig.5(f) is generated (step 4) as an estimate of the original image (by
adding the median filtered result to the sampled data, e.g. the red value at location 6 is
estimated by adding the median filtered result at location 6 to the sampled green value at
location 6). The reconstruction of the edge in this example is exact, although note that for
a median filter of size 3, this will not be the case.

This concept can be carried over to three color sensors wherein differences are calculated

between pairs of colors and the median filter is applied to these differences to generate the
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Fig. 5. Illustration of Freeman’s interpolation method for a two channel system, as in fig.4 an edge is
illustrated as going from navy blue (0,0,128) to yellow (255,255,128) (a) Original image (only 2 colors, blue
constant at 128) (b) one scan line of subsampled Bayer pattern (choose every other pixel) (c) result of linear
interpolation (d) Green minus Red (e) median filtered result of the difference image (f) reconstructed image

final image.

We shall consider neighborhoods of a size such that all the algorithms can be compared
on the same basis. The algorithms described in this document have at most 9 pixels under
consideration for “estimation”. In a square neighborhood, this would imply a 3 x 3 window.

We shall hence use a 3 x 3 neighborhood for Freeman'’s algorithm.

F. Gradient Based Interpolation

This method was proposed by Laroche and Prescott [4] and is in use in the Kodak
DCS 200 Digital Camera System. It employs a three step process, the first one being the
interpolation of the luminance channel (green) and the second and third being interpolation
of the color differences (red minus green and blue minus green). The interpolated color

differences are used to reconstruct the chrominance channels (red and blue). This method
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takes advantage of the fact that tile human eye is most sensitive to luminance changes.
The interpolation is performed depending upon the position of an edge in the green chan-
nel. Referring to fig.1, if we need to estimate Gag, let a= abs((Bus + Bas)/2 — B) and
8= abs((B24 + Bgs)/2— B44). We refer to a and B as “classifiers” and will use them to
determine if a pixel belongs to a vertical or horizontal edge, respectively. It is intriguing
to note that the classifiers used are second derivatives with the sign inverted and halved in

magnitude. We come up with the following estimates for the missing green pixel value.

( G+ Gas

5 if a<p
Gas = Gi;@ it a>p @)
L G43+G451-G34+G54 if a=p

Similarly, for estimating Gas, let o = abs((R31 + Ras)/2— R33) and 8= abs((R13 + Rs3)/2—
Ra3). These are estimates to the horizontal and vertical second derivatives in red, respec-
tively. Using these gradients as classifiers, we come up with the following estimates for the

missing green pixel value.

( G3242-G34 i a<p
Gz = (—;?-S;—G‘?- it a>p (5)
\ G32+G34ZG23+G43 if a=g

Once the luminance is determined, the chrominance values are interpolated from the differ-

ences between the color (red and blue) and luminance (green) signals. This is given by

_ (Rs3 — Gag) + (Ras — G3s)

R34 ) +Gay
R33 — G33)+(Ras — G
Ry — (Rss 33) ! (Rss 35) G (6)
_ (Ras— Ggs) + (Rgs — Gs) + (Rs3 — Gss) + (Rss — Gss)
Ry = +Guy

4
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Note that the green channel has been completely estimated before this step. The bold-face
entries correspond to estimated values. We get corresponding formulae for the blue pixel
locations. Interpolating color differences and adding the green component has the advantage
of maintaining color information and also using intensity information at pixel locations. At

this point, three complete RGB planes are available for the full resolution color image.

G. Adaptive Color Plan Interpolation

This method is proposed by Hamilton and Adams [5]. It is a modification of the method
proposed by Laroche and Prescott [4]. This method also employs a multiple step process,
with classifiers similar to those used in Laroche-Prescott’s scheme but modified to accom-
modate first order and second order derivatives. The estimates are composed of arithmetic
averages for the chromaticity (red and blue) data and appropriately scaled second derivative
terms for the luminance (green) data. Depending upon the preferred orientation of the edge,
the predictor is chosen. This process also has three runs. The first run populates that lu-
minance (green) channel and the second and third runs populate the chrominance (red and
blue) channels.

Consider the Bayer array neighborhood shown in fig.6(a). G; is a green pixel and A;
is either a fed pixel or a blue pixel (All A; pixels will be the same color for the entire
neighborhood). We now form classifiers @ = abs(—As + 2A5 — A7) +abs(G4—G¢) and § =
abs(—A; + 2A5 — Ag) + abs(G2 — Gs). These classifiers are composed of second derivative
terms for chromaticity data and gradients for the luminance data. As such, these classifiers
sense the high spatial frequency information in the pixel neighborhood in the horizontal and
vertical directions.

Consider, that we need to estimate the green value at the center, i.e. to estimate Gs.
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|A3 lc4 As | Gg |A7|

(a) (b)

Fig. 6. Sample Bayer Neighborhood, A; = Chrominance (blue / red), G; = Luminance, Cs = red / blue

Depending upon the preferred orientation, the interpolation estimates are determined as

( G4+Gs+—A3+2A5—A7 it a<p
2 2
Gs = | GZ;G8+—A‘+22A5—A9 if a>p (7)
G+ Gi+Ge+Gsg —Ay—As+4A5— A7 — Ag |
{ i + R if a=p4

These predictors are composed of arithmetic averages for the green data and appropriately
scaled second derivative terms for the chromaticity data. This comprises the first pass of
the interpolation algorithm. The second pass involves populating the chromaticity channels.
Consider the neighborhood as shown in fig.6(b). G; is a green pixel and A; is either a red
pixel of a blue pixel and C; is the opposite chromaticity pixel. Then A; = (A; + As)/2+
(—Gy +2G5 — G3)/2, Ay = (A1 + Ar)/2+ (—G1 +2G4 — Gy)/2. These are used when the
nearest neighbors to A; are in the same row and column respectively.

To estimate Cs, we employ the same method as we did to estimate the luminance
channel. We again, form two classifiers, & and 3 which “estimate” the gradient in the
horizontal and vertical directions. « = abs(—G3s+ 2G5 — Gr) +abs(A3 — A7) and 8 =
abs(—G4 + 2G5 — Gg) +abs(A; — Ag). « and 3 “sense” the high frequency information

in the pixel neighborhood in the positive and negative diagonal respectively. We now have
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estimai:es
4 A3-|2—A7+—‘G3+22G5“"G7 lf a<18
Cs = AI;A9+“G1+22G5—G9 if a>p (8)
A+ As+Ar+Ay —G1—G3+4G5 —Gr— Gy, -
\ 1 + 1 if a=g0

These estimates are composed of arithmetic averages for the chromaticity data and appro-
priately scaled second derivative terms for the green data. Depending upon the preferred
orientation of the edge, the predictor is chosen. We now have the three color planes populated

for the Bayer Array data.

11I. COMPARISON OF INTERPOLATION METHODS

We generated test images, shown in fig.7 and fig.8 which are simulations of the data
contained in the Bayer Array of the camera. In other words, these are images that consider
“what-if” cases in the Bayer Array. They were chosen as test images to emphasize the

various details that each algorithm works on.

A. Type I Test Images

Images of this type are synthetic and have edge orientations along both the cardinal
directions as well as in arbitrary directions as shown in fig.7. Test Image; was chosen to
demonstrate the artifacts each process introduces for varying thicknesses of stripes (increas-
ing spatial frequencies). Test Image, was chosen to study a similar performance, but with a
constant spatial frequency. Test Images is a section from the starburst pattern, to test the
robustness of these algorithms for non-cardinal edge orientations. Note that these images
have perfectly correlated color planes. The intent of these images is to highlight alias-induced

fringing errors.
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Fig. 7. Type I Test Images, a) Test Image; has vertical bars with decreasing thicknesses(16 pixels down to
1 pixel) b) Test Image, has bars of constant width (3 pixels) (c) Test Image; is a section from the starburst
pattern

B. Type II Images

Three RGB images, shown in fig.8 were subsampled in the form of a Bayer array and
then interpolated to get the three color planes. The regions of interest (ROIs) in this image

has been highlighted with a white box. These images were chosen specifically to highlight

(a) (b) ()

Fig. 8. Type II Images, (a) Test Image, (b) Original RGB Macaw Image showing ROIs (c) Original Crayon
Immage showing ROls

the behavior of these algorithms when presented with color edges. Test Image; is a synthetic
image of randomly chosen color patches. Unlike Type I images, these images have sharp
discontinuities in all color planes, independent of each other. The ROIs in fig.8(b) have

relatively high spatial frequencies. The ROIs in fig.8(c) have distinct color edges, one between
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pastel colors and the other between fully saturated colors.

C. Type III Images

This category of images consists of real-world camera images captured with a camera that
has a CFA pattern. No internal interpolation is performed on them. We were therefore able
to get the “true” CFA imagery corrupted only by the optical PSF. The ROIs of these images
are shown in figs.17(a) and 18(a). CFA; has sharp edges and high frequency components
while CFA; has a color edge.

IV. REsuLTS

The results of the demosaicking algorithms presented in section II on the three types of
images are shown in figs.9 to 18. Literature [16] suggests that the AE?, (definition included
in the Appendix) error metric represents human perceptibn effectively. 'We hence make
use of this to quantify the errors observed. However, bear in mind the bounds on this
error for detectability that AE?, errors less than about 2.3 are not easily detected Whﬂe
on the other hand, errors greater than about 10 are so large that relative comparison is
insignificant {17]. This metric gives us a measure of the difference between colors as viewed
by a standard observer. Another metric used for comparison is the mean squared error
(MSE) which provides differences between colors in a “Euclidean” sense. MSE, although
not being representative of the errors we perceive, is popular because of its tractability and
ease in implementation. These metrics are tabulated in Tables I and II. The boldface
numbers represent the minimum values in the corresponding image, which gives us an idea
about which algorithm performs best for a given image. There will be errors introduced in
the printing/reproduction process, but assuming that the errors will be consistent for all the

reproductions, we may infer relative performance of these algorithms.
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In fig.9 and fig.10, notice the fringe artifacts introduced in linear interpolation, termed
as the zipper effect by Adams [12]. The appearance of this effect is considerably reduced
(observe the decrease in the metrics) in Cok’s interpolation. Hamilton-Adams’ and Laroche-
Prescott’s implementation estimates Test Image; exactly (notice that the MSE and AE},
errors are zero). This is because both these algorithms use information from the other chan-
nels for estimation (chrominance channel to interpolate luminance and vice versa). Notice
that all these algorithms perform poorly at high spatial frequencies. All the algorithms
discussed here have identical properties in the horizontal and vertical directions.

For non-cardinal edge orientations such as those shown in Test Images (fig.11) perfor-
mance (observed in the error metrics also) is noted to be worse. Note that the AE7, error
metric is “on an average” considerably higher for Test Images when compared to Test Image;

and Test Image,.

Algorithm || Test Test Test Test Macaw | Macaw | Crayon | Crayon

used Image, | Image, | Images | Image, | ROI; ROI, ROI, ROI,
Linear 34.731 65.487 57.553 9.711 15.457 23.299 7.293 3.645
Cok 16.352 27.122 30.828 11.437 11.017 14.924 6.003 4.131
kFreeman 15.179 55.301 19.513 | 9.599 5.404 7.421 4.649 3.645
Laroche- 7.321 0 24.592 10.944 11.028 14.198 5.507 4.234
Prescott
Hamilton- 3.052 0 21.793 9.303 9.279 11.579 4.409 3.936
Adams

TABLE I

ALY, ERRORS FOR DIFFERENT INTERPOLATION ALGORITHMS AFTER DEMOSAICKING

Test Image, has been used to illustrate the performance of these algorithms when pre-
sented with sharp edges which do not have correlated color planes (see fig.12. From the
error metrics, it is clear that all of them perform poorly at sharp color edges. Note however
that although the AE}, errors are high, the squared error metric is relatively low, clearly

highlighting the advantage of using AE?;,. Using only the squared error would have been
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Algorithm || Test Test Test Test Macaw | Macaw | Crayon | Crayon

used - || Image; | Image; | Images | Images | ROI,; ROI, RO, ROI,
Linear 154 253 101.6 18.1 33.0 68.6 104 1.7
Cok 100 163 67.3 31.0 20.5 37.5 6.7 2.1
Freeman 52.2 134 5.7 19.9 3.9 34 2.8 1.6
Laroche- 35.3 0 8.8 26.2 20.1 315 5.8 1.9
Prescott
Hamilton- 214 0 8.3 26.6 11.7 10.5 3.3 1.9
Adams

TABLE I1

MSE (x 10~3) FOR DIFFERENT INTERPOLATION ALGORITHMS AFTER DEMOSAICKING

L
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Fig. 9. (a)Linear (b)Cok (c)Freeman (d)Laroche-Prescott (¢)Hamilton-Adams interpolations on Test Image; .
Note: Images are not the same size as original. Image has been cropped to hide edge effects
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Fig. 10. (a)Linear (b)Cok (c)Freeman (d)Laroche-Prescott (e)Hamilton-Adams interpolations on 'Test
Image,. Note: Images are not the same size as original. Image has been cropped to hide edge effects
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Fig. 11. (a)Linear (b)Cok (c)Freeman (d)Laroche-Prescott (e)Hamilton-Adams interpolations on Test
Images. Note: Images are not the same size as original. Image has been cropped to hide edge effects
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Fig. 12. (a)Linear (b)Cok (c)Freeman (d)Laroche-Prescott (e)Hamilton-Adams interpolations on Test
Imagey. Note: Images are not the same size as original. Image has been cropped to hide edge effects

nﬁsleading.

The macaw images illustrate the alias-induced errors while at the same time, showing
a confetti type of error. These errors come about due to intensely bright or dark points (in
a dark or bright neighborhood, respectively). Freeman’s algorithm performs best in these
regions because it is able to remove such “speckle” behavior in the images due to the median
filtering process (observe that the AE¥ errors are smallest for Freeman’s algorithms in such
regions).

The crayon images on the other hand are reproduced very precisely (see fig.15 and
fig.16), with very few errors. ROI; shows some errors at the edges where the line-art appears.
However, this error is not very evident. ROI, is reproduced almost exactly. In fact, depending
upon the print process or the display rendering process, one may not be able to see the errors
generated at all. This shows that these algorithms perform very well at blurred color edges

(which is the case with many natural scenes).
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Fig. 13. (a) Original “truth” ROI, of macaw image (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott

(f)Hamilton-Adams interpolations on Macaw Image. Note: Images are displayed along with original image
for comparison purposes

(a) (b) () (d () (f)

Fig. 14. (a) Original “truth” ROl of macaw image (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott
(f)Hamilton-Adams interpolations on Macaw Image. Note: Images are displayed along with original image
for comparison purposes

In Type HI images which are raw readouts from a CFA camera, we cannot use the
metrics we have been using thus far as there is no “reference” image with which to compare
these results. However we may use visual cues to determine performance, and we observe
similar trends in these images as was observed in synthetic images. Observe in fig.17 that
the high spatial frequencies and non-cardinal edge orientations are not reproduced correctly
(as was the case with Type I images). Color edges are also reproduced with reasonably good
fidelity as is seen in fig.18 - although some zipper effect is observed with Linear and Cok

interpolations.
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Fig. 15. (a) Original “truth” ROI; of crayon image (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott
(f)Hamilton-Adams interpolations on Macaw Image. Note: Images are displayed elong with original image
for comparison purposes ’
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Fig. 16. (a) Original “truth” ROI, of crayon image (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott
(f)Hamilton-Adams interpolations on Macaw Image. Note: Images are displayed along with original image
for comparison purposes
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Fig. 17. (a) Original image CFA; (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott (f)Hamilton-Adams
interpolations
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Fig. 18. (a) Original image CFA, (b)Linear (c)Cok (d)Freeman (e)Laroche-Prescott (f)Hamilton-Adams
interpolations




Ramanath et. al: DEMOSAICKING 22

V. DISCUSSION

Laroche-Prescott’s and Hamilton-Adams’ interpolation processes have similar forms.

Both of them use second derivatives to perform interpolation which may be written as
v=u+Ag - (9)

where u is the data (original image), v is the resulting image A > 0, g is a suitably defined
gradient. We may think of eqn.9 in the form of that used for unsharp masking [18], an
enhancement process. Unsharp masking may be interpreted as either subtraction of the
low-pass image from the original image (scaled) or of even as addition of a high-pass image

to the original image (scaled). To see the equivalence let the image I be written as
I=L+H (10)

the sum of its low-pass (L) and high-pass (H) components. Now, define unsharp masking
by

F = al—-L
= (a—1)I+I-L (11)
= {(a—1)I+H

which has a form similar to that in eqn.9. Hence, one of the many ways to interpret Laroche-
Prescott’s and Hamilton-Adams’ algorithms, is an unsharp masking process. It may hence
be expected that these processes will sharpen edges (only those in the cardinal directions,
due to the manner in which they are implemented) in the resulting images as is observed in
the results obtained from Laroche-Prescott’s and Hamilton-Adams’ interpolations (figs.9 to
18).

From Tables I and II, on the basis of simple majority, Freeman’s algorithm outperforms

the other algorithms. On the other hand, in two cases, it performs very poorly.
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For Test Image;, as can be seen from fig.9, Linear interpolation produces the zipper
effect that had been mentioned earlier. This is because linear interpolation is a low pass
filter process and hence incorrectly locates the edges in each color plane, introducing zipper
[12]. Cok’s interpolation reduces hue transitions over the edges since it interpolates the
hue of the colors and not the colors themselves which reduces abrupt hue jumps producing
fewer perceptual artifacts. Freeman’s algorithm, using the median as an estimator, performs
poorly because it first performs a linear interpolation for the green channel (a blur process),
also introducing ripples. Laroche-Prescott’s algorithm, using classifiers to interpolate in the
preferred orientation reduces errors. Also, interpolating color differences (chrominance minus
luminance), it utilizes information from two channels to precisely locate the edge. Hamilton-
Adams’ algorithm interpolates the luminance channel with a bias to the second derivative of
the chrominance channel, locating the edge in the three color planes with better accuracy.

In Test Image,, although we find the same trend in Linear and Cok interpolations as we
did in Test Image;, we find that Laroche-Prescott’s and Hamilton-Adams’ algorithms are
able to reproduce the image exactly. This is attributed to the structure (and size) of their
estimators and the width of the bars themselves (3 pixels).

In the Test Images, there are two factors that the algorithms are tested against, one is
varying spatial frequencies and the other being non-cardinal edge orientations. Comparing
figs.9 and 10 with fig.11, we observe that vertical and horizontal directions are reproduced
with good clarity while edges along other orientations are not, alluding to the fact that
almost all these algorithms (with the exception of Hamilton-Adams’, which incorporates
some diagonal edge information) are optimized for horizontal and vertical edge orientations.
A similar observation is made for the CFA images.

Note that in Test Imageq4, the edge between the two green patches has been estimated



Ramanath et. al: DEMOSAICKING 24

with good accuracy by Laroche-Prescott’s and Hamilton-Adams’ algorithms. This is at-
tributed to the fact that these two algorithms, unlike the others, use data from all the color
planes for estimation. In this case, the data on either side of the edge‘being “similar”, the
estimate was correct.

Another trend observed is that Hamilton-Adams’ algorithm performs better than Laroche-
Prescott’s algorithm. This is attributed to two reasons; one that the process of estimating
the green channels in Hamilton-Adams’ algorithm incorporates the second order gradient in
the chrominance channels also, providing a better estimate while Laroche-Prescott’s algo-
rithm simply performs a prefential averaging. The second reason is that Hamilton-Adams’
algorithm estimates diagonal edges while estimating the chrominance channels, giving it
more sensitivity to non-cardinal chrominance gradients (which partially explains the slightly

smaller error metrics for Test Images).

VI. CONCLUSION

It has been demonstrated that although the CFA pattern is very useful to capture multi-
spectral data on a monolithic array, this system comes with associated problems of “missing
samples”. The estimation of these missing samples needs to be done in an efficient manner,
at the same time, reproducing the original images with high fidelity.

In general, we observe two types of errors zipper effect errors (occur at intensity edges
see fig.9 for this behavior) confetti errors (occur at bright pixels surrounded by a darker
neighborhood see figs.14 and 13 for this behavior).‘ Experimentally, it has been found that
Freeman’s algorithm is best suited for cases in which there is speckle behavior in the image,
while Laroche-Prescott’s and Hamilton-Adams’ algorithms are best suited for images with
sharp edges.

It is to be noted that demosaicking is not shift-invariant. Different results are observed
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if the location of the edges is phase-shifted (the zipper effect errors show up either as blue-
cyan errors or as orange-yellow errors depending upon edge-location, see fig.9). The result

of demosaicking is hence a function of the edge location.

APPENDIX

Two of the color models suggested by the CIE which are perceptually balanced and
uniform are the CIE-L*u*v* and the CIE-L*a*b* color models. The CIE-L*u*v* model is
based on the work by MacAdams on the Just Noticeable Differences in color [16]. These
color models are non-linear transformations of the XYZ color model. The transformation
from the XYZ space to the CIE-L*a*b* space is given by

116(%)'/2 —16) for & > 0.008856
903.3(3-) otherwise

0" =500[($£)% - (£)}]
b =200[(£)% — (£)*]

where X,,, Y., Z, are the values of X, Y, Z, for the appropriately chosen reference

* __

white; and where, if any of the ratios (X/X,), (Y/Y,) or (Z/Z,) is less than or equal to
0.008856, it is replaced in the above formula by 7.787F +16/116 where F is (X/X5.), (Y/Yy)
or (Z/Z,) as the case may be. The color differences in the CIE-L*a*b* color space are given

by AE?, = /(AL + (Aa*)? + (Bb*)2.
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Abstract

RAMANATH, RAJEEV. Interpolation Methods for the Bayer Color Array (under the
guidance of Dr. Wesley E. Snyder) Digital still color cameras working on single CCD-
based systems have a mosaicked mask of color filters on the sensors. The Bayer array
configuration for the filters is popularly used. This requires that the data be interpolated
to recover all the scene information. Many existing interpolation (demosaicking)
algorithms that can reconstruct the scene use modifications of the bilinear interpolation
method, intro-ducing a variety of artifacts in the images. These algorithms have been
investi-gated. A new method for restoring these color images using an optimization
method known as Mean Field Annealing is introduced using a variety of image prior
models. Their performance relative to existing demosaicking methods is included.



